首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   3篇
航天   1篇
  2014年   1篇
  2005年   1篇
  2004年   1篇
  1982年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
he Swift Gamma-Ray Explorer is designed to make prompt multiwavelength observations of gamma-ray bursts (GRBs) and GRB afterglows. The X-ray telescope (XRT) enables Swift to determine GRB positions with a few arcseconds accuracy within 100 s of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/EPIC MOS CCD detector to provide a sensitive broad-band (0.2–10 keV) X-ray imager with effective area of > 120 cm2 at 1.5 keV, field of view of 23.6 × 23.6 arcminutes, and angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2×10−14 erg cm−2 s−1 in 104 s. The instrument is designed to provide automated source detection and position reporting within 5 s of target acquisition. It can also measure the redshifts of GRBs with Fe line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return for each frame as the source intensity fades. The XRT will measure spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and will follow each burst for days or weeks. Dedicated to David J. Watson, in memory of his valuable contributions to this instrument.  相似文献   
2.
We propose a new approach to forming an estimate of a target track in a distributed sensor system using very limited sensor information. This approach uses a central fusion system that collects only the peak energy information from each sensor and assumes that the energy attenuates as a power law in range from the source. A geometrical invariance property of the proximity of the distributed sensors relative to a target track is used to generate potential target track paths. Numerical simulation examples are presented to illustrate the practicality of the technique.  相似文献   
3.
A digital realization of an adaptive clutter-locking loop is presented. The purpose of the loop is to estimate the mean Doppler frequency of the clutter. The clutter spectrum is then shifted toward the zero Doppler by this estimate. A fixed moving target indicator (MTI) canceler following the loop suppresses the shifted clutter. Experimental simulations illustrate the feasibility of the loop. Results indicate that the proposed canceler works significantly better than a fixed canceler, while not as well as the 10-pulse moving target detector (MTD) processor. However, the complexity of the MTD is significantly more than the relatively simple adaptive processor presented here.  相似文献   
4.
The Finite-Time Lyapunov Exponent (FTLE) has been demonstrated as an effective metric for revealing distinct, bounded regions within a flow. The dynamical differential equations derived in multi-body gravitational environments model a flow that governs the motion of a spacecraft. Specific features emerge in an FTLE map, denoted Lagrangian Coherent Structures (LCS), that define the extent of regions that bound qualitatively different types of behavior. Consequently, LCS supply effective barriers to transport in a generic system, similar to the notion of invariant manifolds in autonomous systems. Unlike traditional invariant manifolds associated with solutions in an autonomous system, LCS evolve with the flow in time-dependent systems while continuing to bound distinct regions of behavior. Moreover, in general, FTLE values supply information describing the relative sensitivity in the neighborhood of a trajectory. Here, different models and variable representations are used to generate maps of FTLE, and the resulting structures are applied to design and analysis within an astrodynamical context. Application of FTLE and LCS to transfers from LEO to the L1 region in the Earth–Moon system are presented and discussed. In an additional example, an FTLE analysis is offered of a few stationkeeping maneuvers from the Earth–Moon mission ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号